Provably Secure FFT Hashing

(+ comments on "probably secure" hash functions)

Vadim Lyubashevsky

Daniele Micciancio

(University of California, San Diego)

Chris Peikert

Alon Rosen

(Harvard University)

Our Hash Function A (Very) High Level Description

- Key: 3 random polynomials
- Input: 3 polynomials with small coefficients
- Function: compute sum of products
- All arithmetic performed modulo p and βⁿ+1
 (β is the indeterminate in the polynomials)
- Function is very efficient, parallelizable, and provably collision-resistant.

Efficiency and Security

Efficiency:

- Input has b bits
- O(b log(b)) time to compute the hash

Security (2 modes of the function):

- "Bulk mode"
 - Large output
 - Finding collisions at least as hard as solving a certain lattice problem in the worst case.
- "Nano mode"
 - Small output
 - Same structure as the bulk mode
 - Finding collisions equivalent to solving a certain (different) lattice problem in the average case

Diffusion and Confusion

Diffusion and Confusion

- For Diffusion, we use the Fast Fourier Transform
 - Idea already appeared in [S91,S92,SV93]
- For Confusion, simply use linear combinations
- By using results in [M02,PR06,LM06], we can build a provably secure compression function.

Performing the Compression (Step 0, Entering Input)

 $x_{1,1}$ $x_{1,2}$ $x_{2,1}$ $x_{2,2}$ $x_{2,n}$ $x_{2,n}$ $x_{3,2}$ $x_{3,n}$

- Compressing a string of length mn (m=3)
- Each $x_{i,j}$ is in $\{0,...,d\}$
- So domain is of size $(d+1)^{mn}$ $((d+1)^{3n})$
- All operations performed in the field Z_p (p>>d)

Performing the Compression (Step 1, Diffusion)

- Step 1: multiply x_{i,j} by w^{j-1}
 - (Just a trick to do multiplication modulo β^n+1)
 - \blacksquare w is an element in Z_p^* of order 2n
 - Thus, w² is a primitive nth root of unity in Z*_p

Performing the Compression (Step 2, Diffusion)

- Step 2: Compute the Fast Fourier Transform of each grouping
 - \blacksquare Use w² as the primitive nth root of unity in Z_p^*
 - $y_{i,j} = \sum_{1 \le k \le n} (x_{i,j} w^{j-1}) w^{2j(k-1)}$

Performing the Compression (Step 3, Confusion)

- Step 3: Multiply y_{i,j} by a_{i,j}
 - The $a_{i,j}$ are uniformly random in Z_p
 - They are the hash function key

Performing the Compression (Step 4, Confusion)

- Step 4: $z_j = \sum_{1 \le i \le n} a_{i,j} y_{i,j}$
 - Output size: pⁿ

Equivalent Hash Function

- Input: $x_1,...,x_m$ in $Z_p[\beta]/<\beta^n+1> (m=3)$
 - Each coefficient of x_i is in {0,...,d}
- Hash key: $a_1,...,a_m$ in $Z_p[\beta]/<\beta^n+1>$
- Output: $z = a_1x_1 + ... + a_mx_m$
- This function is completely equivalent security-wise to the one presented and it's much easier to understand.

Security Guarantee

- Input: $x_1,...,x_m$ in $Z_p[\beta]/<\beta^n+1> (m=3)$
 - Each coefficient of x_i is in $\{0,...,d\}$
- Hash key: $a_1,...,a_m$ in $Z_p[\beta]/<\beta^n+1>$
- Output: $z = a_1x_1 + ... + a_mx_m$
- Theorem [M02,PR06,LM06]:
 - For appropriate values of p,n,d,m, finding a collision for random a₁,...,a_m implies solving the approximate Shortest Vector Problem for all lattices in a certain class.

The Function in Practice ("Bulk Mode")

- Can build a compression function whose security is based on a worst-case problem
- It's efficient, but ... the output is big.
- Sample parameters and security:
 - Domain: \approx 65,000 bits
 - Range: ≈ 28,000 bits
 - Security: Finding collisions implies approximating Shortest Vector to within factor $\approx 2^{32}$ in any 1024 dimensional lattice in a certain class of lattices.
- Could be used to hash large files, but impractical for other purposes

Why such a large range?

- Recall the hash function:
- Input: $x_1,...,x_m$ in $Z_p[\beta]/<\beta^n+1>$
 - **Each** coefficient of x_i is in $\{0,...,d\}$
 - Domain is of size (d+1)^{mn} (mn lg(d+1) bits)
- Hash key: $a_1,...,a_m$ in $Z_p[\beta]/<\beta^n+1>$
- Output: $z = a_1x_1 + ... + a_mx_m$
 - Range is of size pⁿ (n lg(p) bits)
- In the proof of security, p has to be large

Making the Range Smaller

- Making the range smaller:
 - Make p smaller
 - Still the same structure as provably secure function
 - Lose proof of security, but finding collisions still seems to be hard
- By lowering p, can get:
 - Domain=1024 bits, Range=513 bits
 - Finding collisions is equivalent to a certain averagecase (no longer worst-case) lattice problem

Equivalent Lattice Problem

Let a=(a₁,...,a_n) be a random vector (0≤a_i<p). Define Rot(a) as:</p>

Rot(a)

a ₁	a ₂	a ₃	•••	a _n
-a _n	a ₁	a ₂		a _{n-1}
-a _{n-1}	-a _n	a ₁		a _{n-2}
-a ₂	- a ₃	-a ₄	•••	∙a ₁

Equivalent Lattice Problem

- Lattice generated by the rows of matrix B
- Problem: find vector in lattice with small inf. norm

Equivalent Lattice Problem

- Hardness of SVP for previous lattice depends on what Rot(g_i) is.
 - If Rot(g_i) is as we defined it, then finding collisions in the hash function is equivalent to finding a vector in the lattice with inf. norm ≤ d
- Note: If Rot(g_i) is a random matrix, then we get a version of a well-studied (and believed to be hard) problem
 - Great for security ... but we don't know how to make efficient hash function equivalent to the hardness of that problem
- To get equivalency to an efficient hash function, Rot(g_i) needs to have some "algebraic structure".

Algebraic Structure of B

- The lattice generated by B has a lot of "algebraic" structure.
- The structure does not seem to be useful for standard lattice algorithms (e.g. LLL)
- But other attacks exploiting the structure may be possible (for example, defining Rot(a) slightly differently makes the SVP problem very easy).
- But the fact that we have a proof that works for larger values of p gives some evidence that the algebraic structure is not exploitable for smaller p's as well

Sample Parameters for Hash Function

- Input: $\mathbf{x}_1,...,\mathbf{x}_m$ in $Z_p[\beta]/<\beta^n+1>$
 - **Each** coefficient of x_i is in $\{0,...,d\}$
- Hash key: $a_1,...,a_m$ in $Z_p[\beta]/<\beta^n+1>$
- Output: $z = a_1x_1 + ... + a_mx_m$
- n=64, m=8, d=3, p=257
- Domain=1024 bits, Range=513 bits
- Takes ≈ 15 times longer than SHA-256 (we're in the initial stages of implementation)

Conclusion

Presented an approach for using FFT to construct efficient, provably collision-resistant hash functions.

- Using this approach:
 - Constructed an efficient hash function, which may be useful for hashing large files, whose security is based on a worst-case problem.
 - Constructed an efficient hash function whose security is based on an average-case lattice problem.

Comments on Probably Secure Hash Functions

- LASH-k (from this workshop)
 - k = output length (e.g. k = 160,256,384,512)
- We can break compression function for e.g. k=232, 368, 1056, 2096, 10248,...
- "Lunch-time" attack ... literally